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SPECTRAL RESPONSE MEASUREMENTS
OF SOLAR CELLS

INTRODUCTION

In consideration of the importance from both the fundamental viewpoint and
practical application of the spectral response measurements of photovoltic
devices, particularly solar cells, a considerable effort has been expended to
develop the necessary electro-optic instrumentation required for accurate meas-
urements. In addition, the capability of predicting operating performance char-
acteristics and deriving physical material parameters which are closely related
to final performance features, has been refined so that experimental analysis is
performed on a routine basis.

An outline of the instrumentation description is presented along with experi-
mental results and applications.

SPECTRAL RESPONSE MEASUREMENT INSTRUMENTATION -

General instrumentation requirements for measuring the quantum yields of
photovoltaic devices include a monochromator with a constant bandwidth function
and a high transmission efficiency in the wavelength regions of the device re-
sponse. A 1 meter focal-length grating monochromator made by McPherson
Instruments and the necessary rationing electronics comprises the present sys-
tem along with the external beam splitting and transfer optics. The complete
schematic of the optical layout is included in Figure 1. An absolute spectral
reflectance integrating sphere has been added to the monochromator which allows
the concurrent measurement of the solar cell surface reflectance properties.
Figure 2 shows the complete system. k

The grating monochromator is a Czerny turner design and includes a 3' x 3"
B & L grating blazed at 4000 A° with 600 lines per mm. Maximum slit resolution
obtainable is 0.3A°. As seen from Figure 1, the monochromatic beam is divided
by a front-surfaced wedge chopping assembly with the incident beam alternately
directed to the sample surface and a Reeder blackbody detector at a rate of
6.66 cps.

A Brower synchronous rationing system outlined in Figure 3 enables the
solar cell monochromatic short-circuit current to be divided by the monochro-
matic photon intensity which is measured by a blackbody type detector. The
electronically ratioed output is recorded on an X-YY plotter in both and equal
energy and/or equal photon density mode.
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Signal flow of the basic electronics of the system is as follows. There are
two identical channels, one for the solar cell input and one for the blackbody
detector whose outputs are electronically ratioed in the comparison amplifier.
The signal level generated by a solar cell when monochromatic energy is incident
on the cell is transformer coupled to the input X200 pre-amp and subsequently
undergoes attenuation through a front panel controlled antenuator network cover-
ing four decade levels. The three-stage nuvistor pre-amplifier is designed for
low frequency response, stability and low input noise. All circuitry is isolated
from the main chassis and the complete system ground is provided at the pre-
amp input to avoid any possible ground loops. The chopped signal output after
undergoing a feed-back stabilized gain of 200 is directed to a range relay net-
work which provides the proper input level to the main amplifier. The main
amplifier contains two D.C. coupled signal amplifiers; the first input presents a
high impedance to prevent any loading effects in the range relay module and the
second provides a low gain, impedance matching output. The output of the main
amplifier is adjusted by a front panel variable gain control and is conditioned in
a low frequency roll-off network before being applied to a fixed frequency selec-
tive amplifier. The frequency selector unit contains the phase delay capacitors
which determine the coarse phasing of the chopped input signal in addition to the
twin-tee network for the selective amplifier and all other tuned circuits which
are dependent upon the light chopping frequency. At the center chopping frequency
the selective amplifier has a gain of approximately 100 where the twin-tee filter
in the feedback loop appears as an open-circuit. This amplifier is D.C. coupled
throughout with the necessary stability being achieved through the twin-tee feed-
back path. Both normal-phase and paraphase outputs are generated in the selec-
tive amplifier for use in the synchronous rectifier module. The push-pull out-
puts are applied to high speed mercury-wetted relays in the rectifier module
which are driven in synchronism with the light chopper to produce positive and
negative full-wave rectified signals having D.C. components at the chopping
frequency; low pass filters remove the ripple before application to a double-pole
solid state chopper driven by sequential gates at approximately 1000 cps.

The final output of the solar cell channel is comprised of a chopped signal
having positive and negative D.C. levels separated by equal spaces correspond-
ing in time with the chopped signal from the thermocouple detector channel. If
the ratio of the two separate channels, i.e. solar cell output referenced to the
blackbody detector output is not required the ratio mode is bypassed and the
instrument is used as two independent synchronous amplifiers. The chopped
signals from the solar cell and detector modules are properly phased and added
in the common comparison amplifier which ultimately provides two unique com-~
posite signal outputs. When the independent mode is selected the summed output
from the comparison amplifier is applied to a fixed 50:1 attenuator before am-~
plification in the X100 amplifier. Paraphase output signals from this amplification



stage are applied to the Demodulator where the composite signal is restored to
the original two channel D.C. outputs. These separate signals representing the
solar cell monochromatic response and the measured monochromatic photon
intensity are then referred to the final output amplifiers which drive the panel
meter and the external x-yy plotter. Wavelength calibration is derived from a
linear function generation on the gear box of the monochrometer and is applied
to the x-base of the plotter.

When the ratio mode is selected the amplitude of the one channel, the refer-
ence energy, is held constant by means of an automatic servo gain control; the
signal of the other channel after demodulation now represents a true ratio rela-
tive to the reference signal. This ratio is achieved regardless of the signal
level of the reference channel.

For some equal photon density applications and additional clarity of the
performance features of the collection efficiency attribute of the p/n junction a
quantum yield, equal photon density measurement, is desirable. This has been
achieved by the addition of an operational amplifier and function generator stage
added to the final output. The two channel channel capabilities of the plotter
enables the quantum yield and spectral response or either one plus the reference
ratioed output to be recorded as a function of wavelength. In addition, the grating
monochromator has been programmed to operate from 3700 A° to 12000 A°,
typical working regions of present day solar cells.

SYNCHRONIZATION

The importance of the initial synchronization in achieving the final accuracies
of the instrumentation merits a brief summary of this system. A synchronization
Block Diagram given in Figure 4 shows that the input square wave pulse derived
from a photoconductive element modulated by a small secondary blade positioned
on the main shaft of the chopper assembly provides the origin of synchronization
The main trigger generator amplifies this pulse and also provides paraphase
gates at the optical chopping frequency and generates positive trigger pulses at
twice this frequency. Reference phase gates and a delayed trigger pulse are
provided to the Fixed Delay and front panel phasing switches. The output from
the Variable Delay in combination with a selected phase gate is applied to a flip-
flop which generates the calibration and offset signals, the rectifier relay gates,
horizontal sweep trigger and the main synchronizing output gates at the optical
chopper frequency.

EXPERIMENTAL RESULTS

Solar cells with a diversity of spectral responses have been measured and
the degree of accuracy in predicting the short-circuit current output has been
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established. A procedure in calculating the output currents has been developed
by using a flight calibrated cell at 47,000 feet as a standard. Accuracies ob-
tained by this method are comparable to those when using the absolute calibra-
tion of a blackbody detector.

Spectral response measurements of silicon solar cells from eight manu~
facturers which typify their characteristics of production lots i.e., collection
efficiency, surface reflectance and diode properties are shown in Figures 5
through 13. It is overtly apparent that there are large variations in the spectral
responses of cells developed by the manufacturers. Table 1 gives the pertinent
information of these cells and includes open-circuit voltage, conversion efficiency,
short-circuit current measured under solar simulation conditions and calculated
short-circuit currents from AMO solar irradiance using the NRL data. When
comparing the calculated data with the measured solar cell short-circuit currents
it is seen from Table 1 that calculated data agrees within + 2.6% from the values
obtained with the laboratory simulator adjusted to an energy level determined
from cell measurements at 47,000 feet.

GENERAL THEORY

There have been numerous treatments of the theoretical aspects of the
spectral response measurement with each essentially resolving into a solution
of the continuity equation; essential differences in approach generally are vari-
ations in the boundary conditions and the selected physical parameters. A sim-
plified treatment which still retains a clear physical insight to the phenomena is
as follows. By use of Lamberts' absorption law a photon density incident on the
solar cell surface is attenuated by the unigue optical absorption coefficient «, of
the material. In a homogeneous isotropic crystal a decrease of intensity amount-
ing to the fraction AN, /N of the initial photon density can be equated to the
thickness X by the proportionality constant a«. Thus,

2 - LaAX (1)

The negative sign signifies that the intensity has been reduced. Put in differen-
tial form and simple integration gives

In N =

1
|
1S
~<
+
[y
o}
4
(=]

(2)
and

N = N, e X (3
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differentiating gives the generation rate of optical absorption in the crystal.
Thus, the generation g is

- ~aX
g aN, e @)

and since a and N, are functions of wavelength then the generation function
becomes

g(A) = a(\) Ny (A) e e(MX (5)

For a defined incremental volume, it is intuitively apparent that under steady
state equilibrium conditions the net rate of change in the minority carrier con-
centration must be equal to zero i.e., the generation within the incremental
volume is equal to the rate of outward diffusion and the net recombination with-
in the volume. The net rate of recombination is equal to the instantaneous
electron density, which is n-n bt divided by the lifetime, 7, .

recombination = 0 - I (6)

T

when considering an abrupt junction model and the flow of minority carriers solely
by a diffusion process, the outward diffusion flow of current I, is defined by

diffusion = ——iw n ' (7

The outward current flow is also given by

I . dn | ®
= D, dx

where

q = electronic charge
D = diffusion constant

Combining Eq 6 and 7 the diffusion component becomes

diffusion = D_ d’n ‘ 9)
dx?

19



Under steady state illumination the continuity equation is

(M) No (A) e DX %
|odx? (10)
generation recombination diffusion

Solutions to Eq. 10 have been programmed for varying solar cell parameters.
An approximate solution is given by

In = NO(}‘") e-a(}\_)x
9 1+ 1.
a(A\)

which adequately describes the bulk current contribution of the solar cell.

In comparison to the collection efficiency of the surface region the bulk effi-
ciency can clearly be established by the conventional techniques of the minority
carrier diffusion model. The contribution of the total current density from the
conventionally diffused n region is exceedingly complex and for large area solar
cells the interrelation of the effects of surface recombination, a field induced
contribution by virtue of the impurity profile, impurity scattering and general
lack of accurate empirical data make the simple model somewhat nebulous.

" A computer program has been formulated which enables the graphical com-
parison of empirical solar cell data from laboratory measurements and the
solution of Eq. 10 for varying parameters of junction depth and diffusion length.
Typical solutions are shown in Figures 14 through 18, Diffusion length measure-
ments derived from the electron injection technique compares within 25 to 35%
of the values obtained from the spectral response curves.

APPLICATIONS AND CONCLUSION

In addition to the most important application of the solar cell spectral
measurement in calculating current densities for energy sources of known
spectral irradiance there are applications in areas of solar cell materials
improvement. By virtue of the minority carrier lifetime dependence of the
absolute quantum yield any process or fabrication technique which modifies this
bulk parameter can be readily documented by measuring the change in quantum
yield as a function of the modifying mechanism. For particular crystallograph
conditions in orientation, the junction formation process can be optimized by
relating its effects to the resultant quantum yield. It is apparent that the
spectral response measurement is readily applicable to any investigation of
solar cell properties which involve the fundamental physical parameters.

20
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